2024-10-08 06:30:11
4.2.3根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及机械故障类型。
4.2.4结合变压器的带电监测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器地声纹振动频谱时,GZAFV-01系统的操控及监测数据分析系统可以自动去查询变压器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形地异常。 GZAF-1000T系列变压器(电抗器)振动声学指纹监测软件界面。杭州高压开关振动声学指纹在线监测主要产品
技术背景GIS运行时,电流通过高压导体时产生的电动力引起振动,由于导体所受电动力正比于负载电流的平方,GIS本体振动产生的声纹振动信号的基频为100Hz。当存在机械故障时,声纹振动信号的频谱分布将发生改变,产生谐波分量。GIS本体机械型缺陷主要是指内部存在开关触头接触异常、导电杆接触不良、母线卡簧松动、屏蔽罩松动等异常时,在交变电场作用下发生异常振动,长期振动可能导致导电杆和绝缘件松动,易造成绝缘事故。异常振动还可能造成SF6气体泄漏,损坏绝缘子和绝缘支柱,影响外壳接地牢固,危及GIS运行安全。杭州GZAF-1000S系列振动声学指纹在线监测维护说明GZAF-1000T系列变压器(电抗器)振动声学指纹监测时频能量分布矩阵(ATF图谱)。
3.1技术原理变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。
OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。
GIS及敞开式的隔离开关监测技术背景隔离开关在合闸位置时,隔离开关可承载线路额定电流及在规定时间内的异常电流;在分闸位置时,隔离开关的触头间有符合要求的绝缘距离和明显的断开标志,确保检修时人员和设备的安全。然而由于在材料、工艺、设计、安装等方面存在的问题,以及频繁动作时产生的电气老化、机械磨损等缺陷,GIS及敞开式的隔离开关的故障率不断升高,严重影响隔离开关和整个电力系统的安全稳定运行。因此,实施在线监测隔离开关声纹振动及驱动电机电流信号,实现隔离开关运行状态的***评价具有重要意义。杭州国洲电力科技有限公司振动声学指纹在线监测技术的应用意义。
4.1.6通过绕组及铁芯声纹振动信号频谱分析可自动识别峰值频率偏移及谐波增量,实时分析绕组及铁芯运行状态。4.1.7具有自动绘制声纹振动和电流信号的历史数据曲线趋势功能。4.1.8阈值超限告警功能:实时分析信号发展趋势,实现阈值超限自动告警,支持短信发送告警信息。4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。GZAF-1000S系列高压开关振动声学指纹监测系统--敞开式断路器监测功能特性。杭州GIS振动声学指纹在线监测系统结构
GZAF-1000T系列变压器(电抗器)振动声学指纹监测运行状态告警。杭州高压开关振动声学指纹在线监测主要产品
3.3GZAFV-01系统的监测数据信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。杭州高压开关振动声学指纹在线监测主要产品